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A method is presented for the dynamic analysis of a tire–wheel–suspension assembly. The
suspension, modelled by linear spring and dashpot elements, is connected to the center of
a rigid wheel rotating at a constant angular rate. The tire is modelled as an inextensible
circular ring on a foundation connected to the wheel. A distinguishing feature of the
method is that tire deformations are expressed as functions of a fixed-frame rather than
a rotating-frame co-ordinate. With such an approach, the equations of motion are
expressed as a linear, time-invariant system. This is in stark contrast to previously published
results in which a parametrically excited system with periodic coefficients is obtained.
Advantages of the method include: (1) stability can be determined from an eigenvalue
analysis rather than from Floquet analysis which requires numerical time integration, and
(2) modal characteristics of the system in rolling contact can be readily determined. Results
are presented which show the effects of rotation and damping on the static response of a
tire in rolling contact with a flat, frictionless surface. The effects of rotation on the
frequencies and damping ratios of the system are also presented.
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1. INTRODUCTION

Interactions between a vehicle and its tires can influence ride quality significantly. That
being the case, a fundamental understanding of the motion of coupled vehicle–tire systems
is key to accurately predicting ride response. The purpose of this paper is to add to this
understanding by studying the dynamics of a tire–wheel–suspension assembly.

Tire–wheel systems that are not coupled to other structures have been studied
extensively. Approaches to the dynamic analysis of tires include, among others, ring on
elastic foundation models [1–5], thin shell models analyzed using dynamic Green’s function
approaches [6–7], and finite element models [8–12]. A study of the effects of stiffness
non-uniformities on the dynamics of a tire in ground contact is provided in reference [13].
Coupled analyses have typically employed simplified idealizations of the tire such as
lumped parameter [14] and ring [15] models.

A fundamental issue in the study of tire–vehicle systems is the form of the governing
equations of motion. Admittedly, general purpose finite element codes can be used to
formulate and solve the non-linear equations of motion for such systems, but the resources
required can be prohibitive for purposes of ride simulation. Assuming linear models of the
vehicle and tire, the question arises as to the form of the equations for the coupled system.
Previous studies of a tire–wheel–suspension unit [15] indicated that the equations of motion
assume the form of a parametrically excited system with periodic coefficients. In this study,
the equations of motion are expressed as a linear, time-invariant system with constant
coefficients.
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For purposes of simplicity, the tire is modelled as an inextensible circular ring on a
foundation characterized by distributed spring and dashpot elements in the radial and
tangential directions. This foundation can be viewed as a viscoelastic annulus which
restrains relative motion between the wheel and the outer part of the tire. A rigid wheel
rotating at a constant angular rate connects the tire to a suspension which is modelled by
discrete linear springs and dashpots. Deformations of the system are restricted to motion
within a plane.

A distinguishing feature of the method presented is that tire deformations are expressed
as functions of a fixed-frame angular co-ordinate. Related kinematic descriptions have
been adopted by others [16, 17] for rolling contact problems. An important consequence
of using the fixed-frame approach is that the equations of motion can be expressed as a
linear, time-invariant system.

In the following section, the equations of motion for the system are derived. Using a
Fourier series approach, these equations are transformed to a set of simpler equations for
each harmonic. Formulas for the undamped natural frequencies of the system not in
ground contact, along with a method for stability analysis, are presented and compared
with other approaches. In the third section, a method is presented for determining the static
response of a tire in contact with a flat frictionless surface. The effects of damping and
rotation rate on the contact solution are shown for an example problem. In the fourth
section, a method is developed for determining the modal characteristics of a system in
ground contact. The effects of the rotation rate on the natural frequencies and damping
ratios of the system are shown.

2. EQUATIONS OF MOTION

The model used for the tire–wheel–suspension assembly is shown in Figure 1. The wheel
center O is connected to an inertial frame N by springs kx and ky and viscous damping
elements cx and cy to model a suspension system. The displacement of O is expressed as

pO = xn1 + yn2, (1)

where the unit vectors n1 and n2 are fixed in N. The wheel is assumed to be rigid and
rotating at a constant angular rate V. The tire itself is modelled as an inextensible circular

Figure 1. Model of tire–wheel–suspension assembly.
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ring on a foundation with distributed spring stiffness kr and ku and damping coefficients,
cr and cu in the radial and tangential directions. The nominal mean radius, width, thickness,
and density of the ring are denoted by a, b, h, and r, respectively. The ring has an internal
pressure p0 and bending stiffness EI=Db. Only planar deformations of the ring are
considered.

Unit vectors b1 and b2 are fixed in the wheel as shown in Figure 1. When the tire is
undeformed, the material point P is located at an angle u=c−Vt from b1 at the mean
ring radius. The position vector from O to P at time t is given by

p(c, t)= [a+wr (c, t)]dr +wu (c, t)du , (2)

where wr and wu are the radial and tangential displacements of P and

dr =cos cn1 + sin cn2, du =cos cn2 − sin cn1. (3, 4)

Notice from equations (3) and (4) and Figure 1 that dr and du are radial and tangential
directed unit vectors fixed in the inertial frame associated with the angle c. The position
vector from O to P at time t+Dt is given by

p(c+VDt, t+Dt)= p(c, t)+
1p
1c

VDt+
1p
1t

Dt+O(Dt2), (5)

where O(Dt2) denotes second and higher order terms in Dt. Using equations (1)–(5), the
velocity of P in N is expressed as

Nv(c, t)= ẋn1 + ẏn2 + lim
Dt:0

{[p(c+VDt, t+Dt)− p(c, t)]/Dt}

=[ẇr +V(w'r −wu )+ ẋ cos c+ ẏ sin c]dr

+[ẇu +V(a+wr +w'u )− ẋ sin c+ ẏ cos c]du , (6)

where the primes and dots denote differentiation with respect to c and t, respectively. The
velocity of P in the wheel reference frame B is given by

Bv(c, t)= (ẇr +Vw'r )dr +(ẇu +Vw'u )du . (7)

Equations (6) and (7) are used subsequently to obtain expressions for the kinetic energy
of the ring and the virtual work of the foundation damping forces.

For an inextensible ring, the radial and tangential displacements are related by the
constraint equation

wr =−w'u . (8)

Using equations (6) and (8), the kinetic energy of the ring and wheel is expressed as

T=
rabh

2 g
2p

0

{[ẇ'u +V(wu +w0u )− ẋ cos c− ẏ sin c]2

+ [ẇu +Va− ẋ sin c+ ẏ cos c]2} dc+[mw (ẋ2 + ẏ2)+ Iw V2]/2, (9)

where mw and Iw are the mass and moment of inertia of the wheel. The strain energy of
the ring [18], the foundation, and the suspension are given by

U=
b
2 g

2p

0

{D(w'u +w1u )2/a3 + (rahV2 + p0) (wu +w1u )2 + a[ku w2
u + kr (w'u )2]} dc

+(kx x2 + ky y2)/2. (10)
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Using equations (7) and (8), the virtual work of external forces, damping forces, and the
internal pressure [18] is expressed as

dW= ab g
2p

0

{ fr (cos cdx+sin cdy− dw'u )+ fu (cos cdy−sin cdx+ dwu )

− cr (ẇ'u +Vw1u )dw'u − cu (ẇu +Vw'u )dwu + p0 [−w'u +wu (wu +w0u )/(2a)]} dc

+( fx − cx ẋ)dx+( fy − cy ẏ)dy, (11)

where fr and fu are distributed radial and tangential forces acting on the ring and fx and
fy are forces acting on the wheel in the n1 and n2 directions.

Hamilton’s principle [19] is written as

g
t2

t1

(dT− dU+ dW) dt=0, (12)

where d is the vibrational symbol. Substituting equations (9)–(11) into equation (12),
integrating by parts, and setting the coefficients of dwu , dx, and dy equal to zero yields
the following equations of motion:

rh[ẅu − ẅ0u −2ẍ sin c+2ÿ cos c−2V(ẇ'u + ẇ1u )]+Lu = du + f'r , (13)

(mw +mr )ẍ+ cx ẋ+ kx x+Lx = fx + ab g
2p

0

( fr cos c− fu sin v) dc , (14)

(mw +mr )ÿ+ cy ẏ+ ky y+Ly = fy + ab g
2p

0

( fu cos c+ fr sin c) dc , (15)

where

Lu =−D(w0u +2wIV
u +wVI

u )/a4 + p0 (w0u +wIV
u )/a− kr w0u + ku wu

− cr (ẇ0u +Vw1u )+ cu (ẇu +Vw'u ), (16)

Lx =−rabh g
2p

0

{cos c[ẅ'u +V(ẇu + ẇ0u )]+ ẅu sin c} dc, (17)

Ly =−rabh g
2p

0

{sin c[ẅ'u +V(ẇu + ẇ0u )]− ẅu cos c} dc, (18)

mr =2prabh. (19)

The undamped natural frequencies of the system can be determined by setting the
damping coefficients and forcing terms in equations (13)–(15) equal to zero and assuming
a solution of the form

wu (c, t)= a0 cos v0 t+(a1 cos c+ b1 sin c) cos v1 t+ s
a

n=2

an cos (nc+vn t), (20)

x= x1 cos v1 t, y= y1 cos v1 t. (21, 22)
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The assumed form of the solution used in the summation of equation (20) reflects the fact
that the mode shapes for nq 1 are complex. That is, the maximum deformation of all
points on the tire is not reached at the same time.

The natural frequencies v1 are the solutions to either of the characteristic equations

mr mw v4
1 − [pab(kr + ku ) (mw +mr )− kx mr ]v2

1 + pab(kr + ku )kx =0,

mr mw v4
1 − [pab(kr + ku ) (mw +mr )− ky mr ]v2

1 + pab(kr + ku )ky =0. (23)

For n$ 1, one obtains

vn =−
Vn(n2 −1)

n2 +1
2XV2n2(n2 −1)2

(n2 +1)2 + v̂2
n , (24)

where

v̂2
n =[Dn2(n2 −1)2/a4 + p0 n2(n2 −1)/a+ ku + n2kr ]/[rh(n2 +1)]. (25)

The mode shapes of the system not in ground contact can be interpreted as deformation
patterns given by cos nc traveling in the clockwise direction at the angular rate vn /n. In
order to relate the natural frequencies in the fixed reference frame to those observed in
the wheel reference frame B, the angle u defined by u=c−Vt is introduced. Notice that
a fixed value of u corresponds to a particular material point on the ring. By substituting
c= u+Vt into the expression cos (nc+vn t), one observes that the coefficient of t is
vn + nV. Thus, the natural frequencies of vibration in the wheel reference frame differ from
vn by the rotation rate multiplied by the wave number. Adding Vn to the right hand side
of equation (24) yields

Bvn =
2Vn

n2 +1
2XV2n2(n2 −1)2

(n2 +1)2 + v̂2
n . (26)

The natural frequencies of the system in the wheel reference frame given by equation (26)
are consistent with previous results [20] in which the equations of motion were formulated
in a rotating rather than a fixed reference frame.

For purposes of comparison, the external buckling pressure for a stationary ring is
determined by setting v̂n equal to zero in equation (25) and solving for pn =−p0. The
result is

pn =
D(n2 −1)

a3 +
(ku + n2kr )a
n2(n2 −1)

. (27)

The critical buckling pressure given by equation (27) is consistent with previous results [18]
in which the tangential foundation stiffness is set equal to zero.

In order to obtain solutions to equations (13)–(15), the functions wu and fu + f 'r are
expanded as Fourier series:

wu (c, t)= a0 (t)/2+ s
a

n=1

[an (t) cos nc+ bn (t) sin nc], (28)

fu + f 'r = g0 (t)/2+ s
a

n=1

[gn (t) cos nc+ hn (t) sin nc], (29)
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where

gn =
1
p g

2p

0

( fu cos nc+ nfr sin nc) dc, (30)

hn =
1
p g

2p

0

( fu sin nc− nfr cos nc) dc. (31)

Substituting equations (28) and (29) into equations (13)–(18) and equating coefficients of
the cos nc and sin nc terms yields

n=0:

rhä0 + cu ȧ0 + ku a0 = g0 ; (32)

n=1:

K L K L K L K L1 0 0 1 ä1 c1 0 0 0 ȧ1

G G G G G G G G0 1 −1 0 b� 1 0 c1 0 0 b� 1G G G G G G G G
G G G G G G G G2rh

0 −1 g 0 ẍ
+

0 0
cx

pab
0 ẋ

G G G G G G G G
G G G G G G G G1 0 0 g ÿ 0 0 0

cy

pab
ẏk l k l k l k l

k1 Vc1 0 0 a1 g1K L K L K L
−Vc1 k1 0 0 b1 h1G G G G G G

G G G G G G
G G G G G G+ 0 0

kz

pab
0 x + fx /(pab)+

1
p g

2p

0

( fr cos c− fu sin c) dc ; (33)
G G G G G G
G G G G G G
G G G G G G

0 0 0
ky

pab
y fy /(pab)+

1
p g

2p

0

( fu cos c+ fr sin c) dck l k l k l
nq 1:

rh(n2 +1)$än

b� n%+$ cn

−2rhVn(n2 −1)
2rhVn(n2 −1)

cn %$ȧn

b� n%
+$ kn

−Vncn

Vncn

kn %$an

bn%=$gn

hn%; (34)

where

g=1+mw /mr , cn = n2cr + cu , (35, 36)

kn =Dn2(n2 −1)2/a4 + p0 n2(n2 −1)/a+ ku + n2kr . (37)

It is evident from equations (32)–(34) that coupling of the wheel d.o.f. (x and y) only occurs
with the rigid body translation modes of the tire (n=1). Moreover, the equations of
motion are time-invariant. That is, the coefficient matrices appearing in equations (32)–(34)
are all constant.
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A simple eigenvalue analysis reveals that the null solutions to equations (32) and (34)
in the absence of forcing terms are asymptotically stable provided that all the damping
and stiffness parameters are positive. The steady-state solution to these equations for
constant values of gn and hn are given by

an =(kn gn −Vncn hn )/(k2
n +V2n2c2

n ), (38)

bn =(kn hn +Vncn gn )/(k2
n +V2n2c2

n ). (39)

Notice that the response predicted by equations (38) and (39) is always bounded regardless
of the value of V. Thus, for a constant stationary load, there is no critical value of V for
n$ 1. The same observation was made previously [2] for a similar tire model.

A noteworthy feature of equation (33) is that the coefficient matrices are all constant.
This feature is not present in a related study [15] where a coupled system with periodic
coefficients is obtained. In that study, a Floquet analysis requiring numerical time
integration of the equations of motion was used to determine the stability of the unforced
system. In contrast, the present study only requires an eigenvalue analysis of equation (33)
to determine stability. Although direct comparison of the two studies is not readily
accomplished because of some modelling differences, one can show that the time-varying
system of the cited reference can be transformed to an equivalent time-invariant system
via the transformation of variables

a1 = ã1 cos Vt+ b	 1 sin Vt, b1 = b	 1 cos Vt− ã1 sin Vt. (40, 41)

Indeed, substitution of equations (40) and (41) into equation (4.6) of reference [15] leads
to the time-invariant system

K L K L K L
ã �1

l1

rh
0 0 ã�1G G G G G G

G G G G G G
b	 �1 + 0

l1

rh
0 b	 �1G G G G G G

G G G G G G
G G G G G Gÿ 0 0

cs

M
ẏ

k l k l k l

K L K L K Lkz + ku

2rh
l1 V

rh
0 ã1 −FG G G G G G

G G G G G G
+ −

l1 V

rh
kz + ku

2rh
−

kz + ku

2rh
b	 1 = 0 . (42)G G G G G G

G G G G G G
G G G G G G0 −

abp(kz + ku )
M

abp(kz + ku )
M

+
ks

M
y 0

k l k l k l

3. STATIC RESPONSE OF CONTACTING TIRE

The governing equations are now used to determine the static response of a rotating tire
in contact with a flat frictionless surface. As an approximation, the function wu is expressed
as a truncated Fourier series:

wu (c)= a0 /2+ s
M

n=1

an cos nc+ bn sin nc . (43)



. . 634

The assumption of a frictionless surface implies that the contact forces acting on the
tire are in the vertical direction alone. Thus, the radial and tangential forces are given by

fr (c)= f(c) sin c, fu (c)= f(c) cos c, (44, 45)

where f is the contact force. Consistent with the use of equation (43), one can verify that
the ring model of the tire only contacts the flat surface at a finite number of angular
locations. Thus, the contact force can be expressed as

f(c)= s
p

j=1

fcj d(c−ccj ), (46)

where p is the number of contact locations, d denotes the Dirac delta function and ccj is
the jth angular location where contact occurs. In order to solve the contact problem, one
must determine the contact locations and forces as well as their number p.

The number of contact locations p depends on the ring and foundation stiffnesses, the
load supported by the suspension F, and the number of harmonics M used in equation
(43). In general, p increases for increasing values of F and M and decreases for increasing
values of the ring and foundation stiffnesses. For the problems considered in this study,
contact occurs at four locations. In the limit as M:a, the tire contacts the surface along
a line (or lines) rather than at discrete locations.

It is assumed that the bottom of the tire is in imminent contact under a zero load
condition. Contact is accomplished by vertically displacing the flat surface by an amount
z such that a net vertical load F is supported by the suspension. Force equilibrium in the
vertical direction and contact at the angular locations ccj imply that

s
p

j=1

fcj =F/(ab), r(ccj )= r(cc, j+1), ( j=1, . . . , p−1), (47, 48)

where r(c) denotes the vertical position of the ring at the angular location c due to
concentrated forces at the angular locations ccj . Using the inextensibility assumption of
equation (8), one obtains

r(c)= y+[a−w'u (c)] sin c+wu (c) cos c. (49)

At the points of contact, the derivative of r with respect to c must equal zero. Thus,

r'(ccj )=0 ( j=1, . . . , p). (50)

Setting all the dotted terms in equations (32)–(34) equal to zero and making use of
equations (30, 31) and (44)–(47) yields

x=0, y=F/ky , a0 = g0 /ku , $an

bn%=$ kn

−Vncn

Vncn

kn %
−1

$gn

hn%, (51–54)

where

gn = s
p

j=1

fcj (cos nccj cos ccj + n sin nccj sin ccj )/p, (55)

hn = s
p

j=1

fcj (sin nccj cos ccj − n cos nccj sin ccj )/p. (56)



––  635

T 1

System parameter values used in examples

Parameter Value

r 1590 kg/m3

a 0·305 m
b 0·152 m
h 0·0127 m
D 21·75 Nm
kr 5·80×106 N/m3

ku 4·03×106 N/m3

p0 2·07×105 N/m2

ky 3·60×104 N/m
F 1960 N

Substituting equation (43) into equation (49), one obtains

r(c)= y+ a sin c+
a0

2
cos c+ s

M

n=1

[an (cos nc cos c+ n sin nc sin c)

+ bn (sin nc cos c− n cos nc sin c)]. (57)

Differentiating equation (57) with respect to c yields

r'(c)= a cos c−
a0

2
sin c+ s

M

n=1

(n2 −1) (an cos nc sin c+ bn sin nc sin c), (58)

r0(c)=−a sin c−
a0

2
cos c+ s

M

n=1

(n2 −1) [an (cos nc cos c− n sin nc sin c)

+ bn (sin nc cos c+ n cos nc sin c)]. (59)

It is evident that constraint equations (48) and (50) can be expressed solely in terms of
the unknowns fcj and ccj by making use of equations (53)–(58). Thus, equations (47, 48)
and (50) comprise a set of 2p equations in 2p unknowns. Because the constraint equations
are non-linear, a numerical approach is generally required in order to obtain a solution.
The exception is for cases in which there is only one contact location and the tire is either
stationary (V=0) or the damping coefficients cr and cu are both zero. For these cases, the
solution is given simply by fc1 =F/(ab) and cc1 =−p/2. For all other cases, Newton’s
method is used to obtain the solution. After the solution is obtained, r0 is calculated at
the contact locations from equation (59). Positive values of r0(ccj ) and fcj together with
a plot of the deformed shape of the ring are used to verify the assumption that contact
occurs at p locations.

To illustrate the effects of rotation and damping on the static response, consider a system
with the properties given in Table 1. These properties are identical to the ones used in
reference [15]. The damping coefficients cu and cr are given by

cu =2z0 zku rh, cr =2z1 z2(kr + ku )rh− cu , (60, 61)

where z0 and z1 are the damping ratios of the n=0 and n=1 modes for a fixed wheel
and unconstrained tire. For the results presented, z0 and z1 are both set equal to z and
M=400. The suspension damping coefficients have no effect on the static response.

Plots of the deformed shape of the tire near the points of contact are shown in Figure 2
for three different values of Vz. Notice that the contact locations move to the left for
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Figure 2. Deformed shape of tire near contact area (——, Vn=0; – – –, Vn=5; –·–, Vn=10).

increasing values of Vz. This observation is consistent with the fact that a positive moment
must be applied to the wheel in order to maintain a constant rate of rotation. The rate
of work done by the applied moment equals the rate of energy dissipation caused by
damping in the tire.

To illustrate the effects of damping and rotation on the rolling resistance, let Mf denote
the net moment of the contact forces about the wheel center. The frictional coefficient mr

is then defined as

mr =Mf /(Fa) (62)

A plot of mr versus Vz is shown in Figure 3. Notice that the curve is well-approximated
by a linear function of Vz.

4. MODAL CHARACTERISTICS OF CONTACTING TIRE

In the following development, terms with an overhat refer to specific values associated
with the static equilibrium. Perturbation variables ãn , b	 n , ỹ, f	 cj and c	 cj are defined as

ãn = an − ân , b	 n = bn − b
 n , ỹ= y− ŷ, (63–65)

f	 cj = fcj − f
 cj , c	 cj =ccj −c
 cj . (66, 67)

Setting the applied wheel forces fx and fy equal to zero and linearizing the right hand sides
of equations (32)–(34) about the static equilibrium yields
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n=0:

(rhã� 0 + cu ã� 0 + ku ã0)/2= (bT
01 f	 c + bT

03 F
 c c	 c )/(2p); (68)

n=1:

K L K L K L K L1 0 0 1 ã� 1 c1 0 0 0 ã� 1
G G G G G G G G0 1 −1 0 b	 1 0 c1 0 0 b	 1G G G G G G G G
G G G G G G G G2rh

0 −1 g 0 ẍ
+

0 0
cx

pab
0 ẋ

G G G G G G G G
G G G G G G G G1 0 0 g ỹ� 0 0 0

cy

pab
ỹ�k l k l k l k l
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0
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ỹ bT

11 f	 c /pk l k l k l

��

Figure 3. Frictional coefficient mr as a function of Vz.
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nq 1:

rh(n2 +1)$ã� nb	 n%+$ cn

−2rhVn(n2 −1)
2rhVn(n2 −1)

cn %$ã� n

b	 n%
+$ kn

−Vncn

Vncn

kn %$ãn

b	 n%=
1
p$bT

n1 f	 c + bT
n3 F
 c c	 c

bT
n2 f	 c + bT

n4 F
 c c	 c%; (70)

where

f	 c =[ f	 c1 · · · f	 cp ]T, c	 c =[c	 c1 · · · c	 cp ]T, F
 c =diag [ f
 c1, . . . , f
 cp ] (71–73)

and the jth elements of bn1, . . . , bn4 are given by

bn1 ( j)= cos nc
 cj cos c
 cj + n sin nc
 cj sin c
 cj , (74)

bn2 ( j)= sin nc
 cj cos c
 cj − n cos nc
 cj sin c
 cj , (75)

bn3 ( j)= (n2 −1) cos nc
 cj sin c
 cj , bn4 ( j)= (n2 −1) sin nc
 c sin c
 cj . (76, 77)

Linearizing the contact boundary conditions r(ccj )= r(c
 cj ) and r'(ccj )=0 for
j=1, . . . , p about the static equilibrium yields

AT
1 q=0, Cc	 c +AT

2 q=0, (78, 79)

where

A1 = [b01 /2 b11 b12 · · · bM1 bM2 0 b11]T, (80)

A2 = [b03 /2 b13 b14 · · · bM3 bM4 0 0]T, (81)

C=diag [r0(c
 c1), . . . , r0(c
 cp )], (82)

q=[ã0 ã1 b	 1 · · · ãM b	 M x y]T. (83)

Equations (68)–(70) can be expressed equivalently as

M�q̈+C�q̇+K�q=(A1 f	 c +A2 F
 c c	 c )/p, (84)

where the elements of M�, C�, K� are given in the Appendix. Combining equations (78, 79)
and (84), one obtains

&M�00
0

0

0

0

0

0'&
q̈

f	 c
c	 c
'+ &C�00

0

0

0

0

0

0'&
q̇

f	 c

c	 c
'+ &K�AT

1

AT
2

−A1 /p

0

0

−A2 F
 c /p

0

C '& qf	 c
c	 c
'= &000'. (85)

The mode shapes and frequencies of the system can now be determined by transforming
equation (85) to an equivalent first-order form and solving the associated eigenvalue
problem.

The damping coefficients cx and cy can be expressed in terms of the suspension damping
ratios zx and zy as

cx =2zx zkx (mw +mr ), cy =2zy zky (mw +mr ). (86, 87)

For the results presented, zx and zy are both set equal to zs .

�

� �

� �
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The first ten mode shapes and natural frequencies in Hertz of the undamped system in
ground contact for V=0 are shown in Figure 4 for kx =1000ky . The dashed lines and
circles in the figure correspond to the static deformation of the tire and wheel center,
whereas the solid lines and x’s are associated with the mode shapes. Notice that there is
little horizontal motion of the wheel center for any of the modes because of the large
horizontal suspension stiffness.

A one-to-one correspondence between the mode shapes of the system not in ground
contact can be made with those in Figure 4. Modes (a) and (c) can be paired with n=1
harmonics, whereas the torsional Mode (b) is associated with the n=0 harmonic. Modes
(d) and (e), (f) and (g), (h) and (i), and ( j) are associated with the n=2, n=3, n=4, and
n=5 harmonics, respectively.

The frequencies and damping ratios of the system in ground contact as a function of
V are shown in Figures 5 and 6, respectively. These results were obtained by setting
zs =0·05 and z=0·04. The results shown were calculated by solving the first-order form
of the eigenvalue problem associated with equation (85) using an Arnoldi method [21].

The frequencies of the first three modes appear to be relatively insensitive to changes
in the rotation rate. In contrast, the frequencies of Modes (d)–( j) all have a noticeable
dependence on V. The damping ratios of Modes (b) and (c) are nearly independent of V.
The most significant effects of the rotation rate on the damping ratios occurs for Modes
(d)–(f) and (h).

Figure 4. First ten mode shapes and frequencies (Hz) of undamped system in ground contact. Designations
are: (a) 1st vertical; (b) torsional; (c) fore-aft; (d) n=2; (e) 2nd vertical; (f) 3rd vertical; (g) n=3; (h) 4th vertical;
(i) n=4; and ( j) 5th vertical.
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Figure 5. Natural frequencies of damped system in ground contact versus V.

5. CONCLUSIONS

The derivation presented in section 2 shows that the equations of motion for the
tire–wheel–suspension assembly can be expressed as a linear, time-invariant system. This
result is contrasted by previously published work [15] in which a parametrically excited
system with periodic coefficients is obtained. The time-invariance of the governing
equations follows from expressing tire deformations as functions of a fixed-frame rather
than a rotating-frame co-ordinate. With such an approach, the determination of stability,
static deformation, and modal characteristics of the system in ground contact is simplified
significantly.

A method was developed to determine the static deformation of a vertically loaded tire
in contact with a flat and frictionless surface. As expected, non-zero values of damping
and rotation caused the contact patch for the tire to shift in the direction of motion. The
frictional coefficient for rolling was shown to be well approximated by a linear function
of the product of the rotation rate and a damping ratio associated with energy dissipation
of the tire.

A method was developed to determine the frequencies, mode shapes, and damping ratios
of a rotating tire in ground contact. The frequencies of the first three modes of the system
were relatively insensitive to changes in the rotation rate while the remaining seven modes
tracked showed a measurable change in frequency. The damping ratios of the second and
third modes of the system were nearly independent of the rotation rate. The most
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Figure 6. Damping ratios of system in ground contact versus V.

significant effects of rotation on the damping ratios occurred for the fourth through sixth
and eighth modes of the system.
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APPENDIX: MATRIX ELEMENTS

The non-zero elements of M�, C� and K� can be determined from inspection of equations
(68–70) and are given by

M�(1, 1)= rh/2, M�(2n, 2n)= rh(n2 +1), M�(2n+1, 2n+1)= rh(n2 +1),

(A1–A3)

M�(2M+2, 2M+2)=2rhg, M�(2M+3, 2M+3)=2rhg, M�(2, 2M+3)=2rh,

(A4–A6)

M�(2M+3, 2)=2rh, M�(3, 2M+2)=−2rh, M�(2M+2, 3)=−2rh,

(A7–A9)

C�(1, 1)= cu /2, C�(2n, 2n)= cn , C�(2n, 2n+1)=2rhVn(n2 −1), (A10–A12)

C�(2n+1, 2n)=−2rhVn(n2 −1), C�(2n+1, 2n+1)= cn , (A13, A14)

C�(2M+2, 2M+2)= cx /(pab), C�(2M+3, 2M+3)= cy /(pab), (A15, A16)

K�(1, 1)= ku /2, K�(2n, 2n)= kn , K�(2n, 2n+1)=Vncn , (A17–A19)

K�(2n+1, 2n)=−Vncn , K�(2n+1, 2n+1)= kn , (A20, A21)

K�(2M+2, 2M+2)= kx /(pab), K�(2M+3, 2M+3)= ky /(pab), (A22, A23)


